Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218127

RESUMO

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Fármacos Neuroprotetores , Piperidinas , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de N-Metil-D-Aspartato , Tacrina/química , Inibidores da Colinesterase/química , Sítios de Ligação , Colinesterases , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico
2.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003464

RESUMO

Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/líquido cefalorraquidiano , Ácidos Graxos , Histidina , Sistema Nervoso Central , Metabolômica , Biomarcadores/líquido cefalorraquidiano
3.
Biomed Pharmacother ; 167: 115600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783152

RESUMO

Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid ß (Aß) - Aß-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aß-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Feminino , Masculino , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Senoterapia , Imunossupressores , Sirolimo , Serina-Treonina Quinases TOR
5.
Schizophr Bull ; 49(6): 1637-1653, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37379469

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN: We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS: We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS: The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.


Assuntos
Síndrome de DiGeorge , MicroRNAs , Esquizofrenia , Animais , Humanos , Síndrome de DiGeorge/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo
6.
ACS Chem Neurosci ; 14(10): 1870-1883, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37126803

RESUMO

Multiple molecular targets have been identified to mediate membrane-delimited and nongenomic effects of natural and synthetic steroids, but the influence of steroid metabolism on neuroactive steroid signaling is not well understood. To begin to address this question, we set out to identify major metabolites of a neuroprotective synthetic steroid 20-oxo-5ß-pregnan-3α-yl l-glutamyl 1-ester (pregnanolone glutamate, PAG) and characterize their effects on GABAA and NMDA receptors (GABARs, NMDARs) and their influence on zebrafish behavior. Gas chromatography-mass spectrometry was used to assess concentrations of PAG and its metabolites in the hippocampal tissue of juvenile rats following intraperitoneal PAG injection. PAG is metabolized in the peripheral organs and nervous tissue to 20-oxo-17α-hydroxy-5ß-pregnan-3α-yl l-glutamyl 1-ester (17-hydroxypregnanolone glutamate, 17-OH-PAG), 3α-hydroxy-5ß-pregnan-20-one (pregnanolone, PA), and 3α,17α-dihydroxy-5ß-pregnan-20-one (17-hydroxypregnanolone, 17-OH-PA). Patch-clamp electrophysiology experiments in cultured hippocampal neurons demonstrate that PA and 17-OH-PA are potent positive modulators of GABARs, while PAG and 17-OH-PA have a moderate inhibitory effect at NMDARs. PAG, 17-OH-PA, and PA diminished the locomotor activity of zebrafish larvae in a dose-dependent manner. Our results show that PAG and its metabolites are potent modulators of neurotransmitter receptors with behavioral consequences and indicate that neurosteroid-based ligands may have therapeutic potential.


Assuntos
Pregnanolona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Pregnanolona/farmacologia , Pregnanolona/química , Peixe-Zebra , Ácido Glutâmico , Ésteres , Ácido gama-Aminobutírico , Receptores de GABA-A
7.
J Neurosci Res ; 101(7): 1098-1106, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36866610

RESUMO

The present study aimed to examine a weakly electric fish Gnathonemus petersii (G. petersii) as a candidate model organism of glutamatergic theory of schizophrenia. The idea of G. petersii elevating the modeling of schizophrenia symptoms is based on the fish's electrolocation and electrocommunication abilities. Fish were exposed to the NMDA antagonist ketamine in two distinct series differing in the dose of ketamine. The main finding revealed ketamine-induced disruption of the relationship between electric signaling and behavior indicating impairment of fish navigation. Moreover, lower doses of ketamine significantly increased locomotion and erratic movement and higher doses of ketamine reduced the number of electric organ discharges indicating successful induction of positive schizophrenia-like symptoms and disruption of fish navigation. Additionally, a low dose of haloperidol was used to test the normalization of the positive symptoms to suggest a predictive validity of the model. However, although successfully induced, positive symptoms were not normalized using the low dose of haloperidol; hence, more doses of the typical antipsychotic haloperidol and probably also of a representative of atypical antipsychotic drugs need to be examined to confirm the predictive validity of the model.


Assuntos
Peixe Elétrico , Ketamina , Esquizofrenia , Animais , Ketamina/farmacologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Haloperidol/farmacologia , Locomoção
8.
Front Behav Neurosci ; 17: 1280608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268794

RESUMO

The open field test (OFT) is a basic and most widely used test for investigation in animal studies of the neurobiological basis of anxiety and screening for novel drug targets. Here, we present the results of an OFT for weakly electric fish Gnathonemus petersii. This study aimed to describe the behavioral response of G. petersii exposed to an OFT, simultaneously with an evaluation of electrical organ discharges (EOD), to determine whether any association between EOD and patterns of motor behavior in the OFT exists. Treatment of OFT activity and its temporal patterning was assessed for the whole 6-min trial as well as per-minute distributions of activity using a near-infrared camera and an EOD data acquisition system. Our results demonstrated that the time spent, distance moved, and time of activity were significantly higher in the periphery of the OFT arena. The zone preference pattern over the 6-min test session showed that G. petersii prefer the outer zone (83.61%) over the center of the arena (16.39%). The motor behavior of fish measured as distance moved, active time, and swim speed were correlated with the number of EODs; however, no relationship was found between EOD and acceleration.

9.
Front Aging Neurosci ; 14: 996234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437993

RESUMO

Background: Gut microbiota may influence brain functions. Therefore, we prepared a study protocol for a double-blind, crossover, randomized clinical trial to determine the complex effects of human probiotics on memory, psychological, and biological measures in the elderly. Methods: We selected eligible participants using an effective electronic questionnaire containing the inclusion and exclusion criteria and a brief electronic cognitive test. One-third of the respondents with the worst cognitive scores on the electronic test are randomized to group A, starting with a 3-month probiotic intervention, and to group B, starting with a placebo. In a crossover design, both groups change their intervention/placebo status after 3 months for the next 3 months. Participants refusing longer personal assessments due to the COVID-19 pandemic were randomly allocated to one of two subgroups assessed online. Participants in both groups are matched in age, education, gender, and cognitive scores on electronic testing at baseline. At three time points, participants are assessed using a neuropsychological battery, self-report measures of mood, a physical fitness test, blood, urine, and stool samples, and actigraphy. A subset of participants also provided their biological samples and underwent the neuropsychological battery in an extended testing phase 3 months after study termination to find out the long-term effect of the intervention. Discussion: This is the first trial to address the comprehensive effects of human probiotics on memory and many other measures in the elderly. We assume that the probiotic group will have better outcomes than the placebo group after the first and second trimesters. We expect that the probiotic effect will persist for the next 3 months. These study's findings will contribute to an interesting area of how to improve memory, psychological and biological and other factors naturally and will examine the importance of probiotics for overall health in the elderly. Clinical trial registration: [clinicaltrials.gov], identifier [NCT05051501].

10.
Cent Eur J Public Health ; 30(3): 144-153, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36239361

RESUMO

OBJECTIVES: Different psychoactive substances are widely used in today's society. So far limited data are available on the use of psychedelics in the general population. The main aim of this study is to estimate the numbers of users of substances with psychedelic properties (classical psychedelics, cannabis, ecstasy, and ketamine) in the Czech Republic. METHODS: Data from two samples enrolled in representative cross-sectional questionnaire surveys in the Czech adult population in 2016 (n = 2,785) and 2018 (n = 1,665) were analysed. Prevalence rates were extrapolated to estimate numbers of current, i.e., last-year, users of psychedelics, and their socio-demographic profiles were compared with non-users and users of cannabis. RESULTS: An estimated 5-6% of the Czech adult population (350-430 thousand people) used classical psychedelics (LSD, psilocybin mushrooms, ayahuasca) in their lifetime, increasing up to 28-30% when cannabis is included (1.9-2.1 million users). Current use of classical psychedelics reached 0.7-1.9% (50-130 thousand people), and 9-11% (590-750 thousand users) when cannabis was included. Users of psychedelics were more often males, of younger age and single. CONCLUSIONS: No significant socio-demographic differences were found between users of classical psychedelics and recreational cannabis users, however, differences were significant when compared to non-users and users of other illicit drugs. Findings should further serve to inform drug policy and social and healthcare systems in respect to the use of psychedelics.


Assuntos
Cannabis , Alucinógenos , Drogas Ilícitas , Ketamina , Transtornos Relacionados ao Uso de Substâncias , Adulto , Estudos Transversais , República Tcheca/epidemiologia , Alucinógenos/uso terapêutico , Humanos , Dietilamida do Ácido Lisérgico , Masculino , Psilocibina , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
11.
Front Neurol ; 13: 874121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693010

RESUMO

Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) leading to the loss of myelin and axons. Diagnosis is based on clinical findings, MRI, and analysis of cerebrospinal fluid (CSF). CSF is an ultrafiltrate of plasma and reflects inflammatory processes in the CNS. The aim of this study was to perform metabolomics analysis of CSF in patients after the first attack of MS and healthy controls and try to find new specific analytes for MS including those potentially predicting disease activities at the onset. Methods: We collected CSF from 19 patients (16 females, aged 19-55 years) after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS and CSF of 19 controls (16 females, aged 19-50 years). Analyses of CSF samples were provided using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector (TripleTOF 5600, AB Sciex, Canada). Results: Approximately 130 selected analytes were identified, and 30 of them were verified. During the targeted analysis, a significant decrease in arginine and histidine and a less significant decrease in the levels of asparagine, leucine/isoleucine, and tryptophan, together with a significant increase of palmitic acid in the patient group, were found. Conclusion: We observed significant differences in amino and fatty acids in the CSF of newly diagnosed patients with MS in comparison with controls. The most significant changes were observed in levels of arginine, histidine, and palmitic acid that may predict inflammatory disease activity. Further studies are necessary to support these findings as potential biomarkers of MS.

12.
Sci Rep ; 12(1): 9361, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672428

RESUMO

Stable inter-individual differences in behaviour and personality have been studied for several decades now. The aim of this study was to test the repeatability of behaviour of the Long Evans strain of laboratory rats in order to assess their inter-individual differences. Male laboratory rats (n = 36) were tested in a series of tasks (Open field test, Elevated plus maze test, and modified T-maze test) repeated over time to assess their personality traits. To evaluate the temporal stability of the behaviour, we calculated repeatability estimates of the examined traits. We also checked for a link in behavioural traits across these experiments, which would suggest the existence of a behavioural syndrome. We found stable inter-individual differences in behaviour. Interestingly, no link emerged between the tasks we studied and therefore we did not find support for a behavioural syndrome. The lack of behavioural correlations between these experiments suggests that the results derived from these tasks should be interpreted carefully, as these experiments may measure various behavioural axes. Moreover, the animals habituate to the apparatus. Consequently, behaviour in the Open field test and Elevated plus maze test is not fully consistent and repeatable across subsequent trials.


Assuntos
Comportamento Animal , Individualidade , Animais , Masculino , Aprendizagem em Labirinto , Personalidade , Ratos , Ratos Long-Evans
13.
Neurotoxicology ; 90: 35-47, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219782

RESUMO

Psychosis is a state of altered thoughts which often accompanies schizophrenia. It was suggested that changes in energetic metabolism accompany psychosis and post-psychosis states. Here, we use the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 to experimentally induce psychosis-like behavior in rats. We addressed an effect of single and repeated (5×) MK-801 application (0.3 mg/kg; i.p.) on the energy metabolism in homogenates and crude mitochondrial fraction (CMF) of the striatum (STR), prefrontal cortex (PFC), and the hippocampus (HIP) of the adult male Wistar rat (n = 39). In each brain region, we assessed activity of glycolytic (hexokinase (HK) and lactate dehydrogenase (LDH)) and Krebs cycle enzymes (citrate synthase (CS) and malate dehydrogenase (MDH)) 2 h and 3 days (3d) after the last MK-801 application together with relative respiratory rates assessment in tissue homogenate. In STR, a single MK-801 application led to a decrease in the LDH (p = 0.0035) and the increase of the MDH (p = 0.0043) activities following 3d. Therein, repeated MK-801 doses evoked increased LDH (p = 0.0204) and CS (p = 0.0019) activities in the homogenate 2 h and increased HK (p = 0.0007) 3d after the last application. Elevated HK activity within CMF was observed after 3d (p = 0.0054). In PFC, repeated MK-801 application decreased HK activity in the homogenate 3d after the final application (p = 0.0234). Correspondingly, PFC HK activity in CMF of repeated administration samples dropped (p = 0.003). In HIP, repeated MK-801 administration led to increased respiration of SDH (p = 0.0475) only 2 h after the last application and decreased CS activity (p = 0.0160) was observed 3d after the last application. Our results indicate a progressive metabolic dysregulation of glycolytic and Krebs cycle enzymes following repeated inhibition of NMDA receptors activity in a region-specific manner. Energetic alterations may form a basis for persisting cognitive problems during and following a psychosis in schizophrenia patients.


Assuntos
Maleato de Dizocilpina , N-Metilaspartato , Animais , Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/farmacologia , Ciclo do Ácido Cítrico , Maleato de Dizocilpina/farmacologia , Hexoquinase/metabolismo , Hexoquinase/farmacologia , Hipocampo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , N-Metilaspartato/farmacologia , Córtex Pré-Frontal , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Biomolecules ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356650

RESUMO

Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.


Assuntos
Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamento farmacológico , Esteroides/farmacologia , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Modelos Animais de Doenças , Teste de Labirinto em Cruz Elevado , Células HEK293 , Humanos , Masculino , Pregnenolona/metabolismo , Pregnenolona/farmacologia , Ratos Long-Evans , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/metabolismo
15.
Neurosci Lett ; 760: 136003, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34098028

RESUMO

Mitochondria are cellular organelles essential for energy metabolism and antioxidant defense. Mitochondrial impairment is implicated in many psychiatric disorders, including depression, bipolar disorder, schizophrenia, and autism. To characterize and eventually find effective treatments of bioenergetic impairment in psychiatric disease, researchers find animal models indispensable. The present review focuses on brain energetics in several environmental, genetic, drug-induced, and surgery-induced animal models of depression, bipolar disorder, schizophrenia, and autism. Most reported deficits included decreased activity in the electron transport chain, increased oxidative damage, decreased antioxidant defense, decreased ATP levels, and decreased mitochondrial potential. Models of depression, bipolar disorder, schizophrenia, and autism shared many bioenergetic deficits. This is in concordance with the absence of a disease-specific brain energy phenotype in human patients. Unfortunately, due to the absence of null results in examined literature, indicative of reporting bias, we refrain from making generalized conclusions. Present review can be a valuable tool for comparing current findings, generating more targeted hypotheses, and selecting fitting models for further preclinical research.


Assuntos
Transtorno Autístico/fisiopatologia , Transtorno Bipolar/fisiopatologia , Encéfalo/metabolismo , Depressão/fisiopatologia , Metabolismo Energético/fisiologia , Esquizofrenia/fisiopatologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Transtorno Autístico/metabolismo , Transtorno Bipolar/metabolismo , Encéfalo/citologia , Encéfalo/fisiopatologia , Depressão/metabolismo , Modelos Animais de Doenças , Humanos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Esquizofrenia/metabolismo
16.
Eur J Med Chem ; 219: 113434, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892271

RESUMO

Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 µM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.


Assuntos
Inibidores da Colinesterase/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tacrina/química , Acetilcolinesterase/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Cães , Desenho de Fármacos , Meia-Vida , Humanos , Locomoção/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Relação Quantitativa Estrutura-Atividade , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Tacrina/metabolismo , Tacrina/farmacologia
17.
Brain Sci ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809889

RESUMO

Research of treatment options addressing the cognitive deficit associated with neurodegenerative disorders is of particular importance. Application of trimethyltin (TMT) to rats represents a promising model replicating multiple relevant features of such disorders. N-methyl-D-aspartate (NMDA) receptor antagonists and gamma-aminobutyric acid type A (GABAA) receptor potentiators have been reported to alleviate the TMT-induced cognitive deficit. These compounds may provide synergistic interactions in other models. The aim of this study was to investigate, whether co-application of NMDA receptor antagonist dizocilpine (MK-801) and GABAA receptor potentiator midazolam would be associated with an improved effect on the TMT-induced model of cognitive deficit. Wistar rats injected with TMT were repeatedly (12 days) treated with MK-801, midazolam, or both. Subsequently, cognitive performance was assessed. Finally, after a 17-day drug-free period, hippocampal neurodegeneration (neuronal density in CA2/3 subfield in the dorsal hippocampus, dentate gyrus morphometry) were analyzed. All three protective treatments induced similar degree of therapeutic effect in Morris water maze. The results of histological analyses were suggestive of minor protective effect of the combined treatment (MK-801 and midazolam), while these compounds alone were largely ineffective at this time point. Therefore, in terms of mitigation of cognitive deficit, the combined treatment was not associated with improved effect.

18.
Biochem Pharmacol ; 186: 114460, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571502

RESUMO

N-methyl-D-aspartaterecepro receptor (NMDARs) are a subclass of glutamate receptors, which play an essential role in excitatory neurotransmission, but their excessive overactivation by glutamate leads to excitotoxicity. NMDARs are hence a valid pharmacological target for the treatment of neurodegenerative disorders; however, novel drugs targeting NMDARs are often associated with specific psychotic side effects and abuse potential. Motivated by currently available treatment against neurodegenerative diseases involving the inhibitors of acetylcholinesterase (AChE) and NMDARs, administered also in combination, we developed a dually-acting compound 7-phenoxytacrine (7-PhO-THA) and evaluated its neuropsychopharmacological and drug-like properties for potential therapeutic use. Indeed, we have confirmed the dual potency of 7-PhO-THA, i.e. potent and balanced inhibition of both AChE and NMDARs. We discovered that it selectively inhibits the GluN1/GluN2B subtype of NMDARs via an ifenprodil-binding site, in addition to its voltage-dependent inhibitory effect at both GluN1/GluN2A and GluN1/GluN2B subtypes of NMDARs. Furthermore, whereas NMDA-induced lesion of the dorsal hippocampus confirmed potent anti-excitotoxic and neuroprotective efficacy, behavioral observations showed also a cholinergic component manifesting mainly in decreased hyperlocomotion. From the point of view of behavioral side effects, 7-PhO-THA managed to avoid these, notably those analogous to symptoms of schizophrenia. Thus, CNS availability and the overall behavioral profile are promising for subsequent investigation of therapeutic use.


Assuntos
Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tacrina/farmacologia , Animais , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Fármacos Neuroprotetores/química , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Tacrina/química
19.
Bioorg Chem ; 107: 104596, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421953

RESUMO

A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid ß (Aß) aggregation and mitochondrial enzyme ABAD, whose interaction with Aß leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aß aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzotiazóis/farmacologia , Colinérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Tacrina/farmacologia , 3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Benzotiazóis/química , Colinérgicos/síntese química , Colinérgicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Tacrina/química
20.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056106

RESUMO

Pregnanolone glutamate (PA-G) is a neuroactive steroid that has been previously demonstrated to be a potent neuroprotective compound in several biological models in vivo. Our in vitro experiments identified PA-G as an inhibitor of N-methyl-D-aspartate receptors and a potentiator of γ-aminobutyric acid receptors (GABAARs). In this study, we addressed the hypothesis that combined GABAAR potentiation and NMDAR antagonism could afford a potent anticonvulsant effect. Our results demonstrated the strong age-related anticonvulsive effect of PA-G in a model of pentylenetetrazol-induced seizures. PA-G significantly decreased seizure severity in 12-day-old animals, but only after the highest dose in 25-day-old animals. Interestingly, the anticonvulsant effect of PA-G differed both qualitatively and quantitatively from that of zuranolone, an investigational neurosteroid acting as a potent positive allosteric modulator of GABAARs. Next, we identified 17-hydroxy-pregnanolone (17-OH-PA) as a major metabolite of PA-G in 12-day-old animals. Finally, the administration of PA-G demonstrated direct modulation of unexpected neurosteroid levels, namely pregnenolone and dehydroepiandrosterone sulfate. These results suggest that compound PA-G might be a pro-drug of 17-OH-PA, a neurosteroid with a promising neuroprotective effect with an unknown mechanism of action that may represent an attractive target for studying perinatal neural diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA